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Abstract: Qualitative approaches to cognitive rigor and depth and complexity are broadly represented by Webb’s Depth
of Knowledge and Bloom’s Taxonomy. Quantitative approaches have been relatively scant, and some have
been based on ancillary measures such as the thinking time expended to answer test items. In competitive
chess and other games amenable to incremental search and expert evaluation of options, we show how depth
and complexity can be quantified naturally. We synthesize our depth and complexity metrics for chess into
measures of difficulty and discrimination, and analyze thousands of games played by humans and computers
by these metrics. We show the extent to which human players of various skill levels evince shallow versus
deep thinking, and how they cope with ‘difficult’ versus ‘easy’ move decisions. The goal is to transfer these
measures and results to application areas such as multiple-choice testing that enjoy a close correspondence in
form and item values to the problem of finding good moves in chess positions.

1 INTRODUCTION

Difficulty, complexity, depth, and discrimination are
important and related concepts in cognitive areas such
as test design, but have been elusive to quantify.
Qualitative approaches are legion: Bloom’s taxon-
omy (Bloom, 1956; Krathwohl et al., 1973; Ander-
son and Krathwol, 2001), Webb’s Depth of Knowl-
edge Guide (Webb, 1997), Bransford et al.’s studies of
learning (Bransford et al., 2000; Donovan and Brans-
ford, 2005). Quantitative approaches have mainly ei-
ther inferred values from performance data, such as
results on large-scale tests (Morris et al., 2006; Hotiu,
2006), or have measured ancillary quantities, such as
deliberation time in decision field theory (Busemeyer
and Townsend, 1993) or estimations of risk (Tversky
and Kahneman, 1992).

Our position is to approach these concepts by
starting in a domain where they can be clearly for-
mulated, cleanly quantified, and analyzed with large
data. Then we aim to transfer the formulations,
results, and conclusions to domains of wider in-
terest. Our home domain is competitive chess, in
which the items are thousands to millions of positions
from recorded games between human players in var-
ious kinds of high-level tournaments. Work to date
(Chabris and Hearst, 2003; Haworth, 2003; Guid and
Bratko, 2006, 2011; Regan and Haworth, 2011) has
established solid relationships between quality mea-

sures arising from direct analysis of players’ move de-
cisions and standard skill assessment metrics in chess,
mainly grades of mastery and the Elo rating system.
Some prior work (Chabris and Hearst, 2003; Moxley
et al., 2012) has extended the correspondence to time
available and/or taken for (move) decisions, but this
is still short of isolating depth or difficulty as factors.

Our aims are helped by similarities between the
tasks of finding an optimal move (or at least a good
move) in a chess position and finding the best answer
to a multiple-choice question (or at least a good an-
swer in case there are partial credits). There are also
mathematical correspondences between the Elo rating
system (Elo, 1978; Glickman, 1999) and metrics in
Rasch modeling (Rasch, 1961; Andersen, 1973; An-
drich, 1978; Masters, 1982; Andrich, 1988; Linacre,
2006; Ostini and Nering, 2006), item-response theory
(Baker, 2001; Morris et al., 2006; Thorpe and Favia,
2012), and other parts of psychometrics.

Elo ratings rP of players P maintain a logistic-
curve relationship between the expected score of P
over an opponent Q and the rating difference rP� rQ.
A difference of 200 points gives roughly 75% expec-
tation, and this has produced a scale on which 2200
is recognized as “master,” the highest few players
are over 2800, and many computer chess engines are
rated well over 3000 even on inexpensive hardware.
The engines can hence act as an objective and author-
itative “answer key” for chess positions.
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Essentially all engines give values in standard
units of centipawns and use iteratively deepened
search. That is, beginning with d = 1 (or some other
floor value) they search to a basic depth of d plies
(meaning moves by White or Black, also called half-
moves), give values vi;d to each legal move mi at that
depth d, and then deepen the search to depth d + 1.
This incremental search can be capped at some fixed
maximum depth D. Based on depth-to-strength esti-
mates by Ferreira Ferreira (2013) for the Houdini 1.5a
engine and matches run by us between it and versions
2.3.1 and 3 of the Stockfish engine used for the re-
sults reported here, we estimate depth 19 of the latter
(in so-called Multi-PV analysis mode) at 2650 �50.

Taking care to begin with an empty hash table for
each position in each game, we use Stockfish’s val-
ues vi;d for 1 � d � D = 19 to quantify our key con-
cepts. Our measures are weighted so that values of
poor moves have little effect, so we could effectively
bound the number of legal moves at ‘= 50. We con-
sider moves ordered so that v1;D � v2;D � �� � � v‘;D
at the highest depth, but of course the highest value
v�d for d < D might equal vi;d where i > 1. We actu-
ally work in terms of the differences v�d � vi;d , and in
order to reflect that differences matter less when one
side has a large advantage, we further scale them by
defining

di;d =
Z x=v�d

x=vi;d

1
1+ajxj

dx:

Here the constant a might be engine-dependent but
we fix a = 1 since we used only two closely-related
Stockfish versions. Cases where v�d is positive but vi;d
is negative (meaning that move mi is an error leading
from advantage to disadvantage) are handled by doing
the integral in two pieces. All di;d values are nonneg-
ative, and are 0 for the optimal move at each depth
and any other moves of equal value. The key idea of
swing is exemplified by these two cases:

� A move mi swings up if vi;d < v j;d for some other
moves m j at low depths d, but vi;d � v j;d for (al-
most) all other m j for depths d at or near the max-
imum analyzed depth D.

� The move swings down—and intuitively is a
“trap” to avoid—if it has one of the highest values
at low depths, but is markedly inferior to the best
move m1 at the highest depth: vi;D� v1;D = v�D.

It is expected in the former case that vi;D > vi;d for
lower depths d, and in the latter that vi;D � vi;d , so
that a swinging move changes its absolute value, but
it is its value relative to other moves that is primarily
assessed.

2 METRICS AND RATINGS

At each depth d, the chess program produces an or-
dered list Ld of moves and their values. Comparing
these lists Ld for different d involves standard prob-
lems in preference and voting theory, with the twist
that high values from poor moves have diminished
weight. We speak of rating aggregation rather than
rank aggregation because the values of each move,
not just the ordinal ranks, are important.

We postulate that swing should be a signed quan-
tity in centipawn units that pertains to an individual
move option, while complexity should be nonnegative
and dimensionless and pertain to a position overall.
Swing should reflect a bulk comparison of Ld for low
d versus high d, while complexity can be based on
how Ld changes to Ld+1 in each round of search. Thus
for complexity we may employ some divergence mea-
sure between ordered sequences X = (xi), Y = (yi)
and sum it up over all d. Whereas common voting
and preference applications give equal weight to all
choices, we wish to minimize the effects of apprecia-
bly sub-optimal moves.

Any anti-symmetric difference function µ(xi;x j)
gives rise to the generalized Kendall tau coefficient

tX ;Y =
åi; j µ(xi;x j)µ(yi;y j)

jjµX jj � jjµY jj
; (1)

where jjµX jj =
q

åi; j µ(xi;x j)2 and jjµY jj is defined
similarly. Then always �1 � tX ;Y � +1, with +1
achieved when Y = X and �1 when Y = �X . If
µ is homogeneous, so that µ(cxi;cx j) = c0µ(xi;x j)
where c0 depends only on c, then tX ;Y becomes scale-
invariant in either argument: tX ;cY = tcX ;Y = tX ;Y .

The usual difference function µ(xi;x j) = xi� x j is
linear, and also invariant under adding a fixed quantity
to each value. It is not, however, invariant under aug-
menting the lists with irrelevant alternatives having
low ratings. We swap these properties by employing

µ(xi;x j) =
xi� x j

x2
i + x2

j

instead. When either xi or x j is large, say of order
K representing a poor move, then µ(xi;x j) will have
order at most 1=K. Assuming that the same move is
poor in Y , the augmentation will add terms of order
only 1=K2 to the numerator and denominator of (1),
yielding little change. This naturally confines atten-
tion to reasonable moves at any juncture. We define
the complexity k(p) of a position p, for d ranging from
the minimum available depth d0 to D�1, by:

k(p) = 1� 1
D�1

D�1

å
d=1

tLd ;Ld+1 :

Quantifying�Depth�and�Complexity�of�Thinking�and�Knowledge

603



Notice that high agreement (t always near 1) flips
around to give complexity k near 0. The definition
of complexity might be modified by weighting higher
depths differently from lower depths.

To define the swing of a move mi we use a simple
sum of scaled differences in value between depth d
and the highest depth D, rather than average or other-
wise weight them over d:

sw(mi) =
D

å
d=1

(di;d�di;D):

This is a signed quantity—if positive it means that the
value of move mi “swings up”, while negative means
it “swings down”—in the manner of falling into a
trap. The overall “swinginess” of a position p, how-
ever, is a non-negative quantity. It is convenient first
to define it between any two depths d and e:

sd;e(p) =
‘

å
i=1
jdi;d�di;ej:

For overall swing it is expedient to dampen the ef-
fect of moves for which di;d is large. Unlike the case
with Kendall tau, we want to dampen a difference
jdi;d�di;ej only if both values are large. We also wish
to divide by a dimensionless quantity, in order to pre-
serve the centipawn units of swing. Hence we postu-
late a scaling factor c that might depend on the chess
program, and divide by an exponential function of the
harmonic mean of the deltas divided by c:

n(d;d0) = exp
�
�2dd0

c(d+d0)

�
:

Since this paper uses only one chess program, we
again take c = 1. Thus we define the damped over-
all swing between depths d and e by:

s�d;e(p) =
‘

å
i=1

n(di;d ;di;e)jdi;d�di;ej:

Then the swing at depth d is given by s�d;d+1(p), while
the aggregate swing to the highest depth is defined by

S(p) =
D�1

å
d=1

s�d;D:

We employ weighted versions of this to define our key
concepts. We desire the measure of difficulty to be in
units of depth rather than centipawns. Our idea is that
a position is deeper, hence more difficult, if most of
the swing occurs at higher depths. It is OK to multiply
it by the complexity since that is dimensionless.

Accordingly, we first define the relative depth r

to be the depth below which half of the swing has
occurred. For this we add up the swing from each

depth to the next, rather than the swing relative to the
highest depth. With respect to nonnegative weights
w(d) summing to 1, define

S(p) =
D�1

å
d=1

w(d)s�d;d+1(p):

We used w(d) = d normalized by å
D�1
d=1 d. Then, let-

ting Se(p) be the sum up to e rather than D�1, define

r(p) = maxfe : Se(p)�
1
2

S(p)g�y;

where the adjustment y term for the indicated e is

y =
Se(p)� 1

2 S(p)

w(e�1)s�e�1;e(p)
:

Finally, we stipulate that the analyzed difficulty of a
position p is given by

Diff (p) = k(p) �r(p):

For calculating the discrimination we use the rel-
ative depth of the position. We evaluate the mean
al and standard deviation sl of s�d;D values where
d 2 (1;e� 1) (e = r(p)) and mean ar and standard
deviation sr of s�d;D values where d 2 (e;D�1).

The discrimination parameter Y of the position p

can then be evaluated as:

Y(p) = (al�ar)(
al

sl
+

ar

sr
)

åi; j wi; j(s�i;D� s�j;D)
2

åi; j wi; j
:

The weights wi; j = 1=( j� i) where i 2 [l] and j 2 [r]
ensures more emphasize to the depths near the diffi-
culty of the position while calculating discrimination.

Our first of two main datasets comprised all
recorded games in standard round-robin1 tournaments
in 2006–2009 between players each within 10 Elo
of a “milepost” value. The mileposts used were Elo
2200, 2300, 2400, 2500, 2600, and 2700. The sec-
ond comprised all 900 games of the 2013 World Blitz
(WB) Championship, which was held in Khanty-
Mansiysk, Russia, and distinguished by giving an ac-
curate record of the moves of every game. This form
of blitz, 3 minutes per game plus an increment of 2
seconds per move, is comparable to the historical “5-
minute” form of blitz, and gives markedly less time
than the minimum 90 minutes plus 30 seconds per
move of the “milepost” games. Our idea was to test
whether the blitz games were played at an identifiably
lower level of depth. The average rating of the 60 WB
players was 2611.

1“Small Swiss” events with up to 64 players over 9
rounds were also included.
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Table 1: Best move and number of total moves played various swing.

Swing < 1 1 � Swing < 2 2 � Swing < 3 3 � Swing < 4 4 � Swing � 5
Level #EMP TM #EMP TM #EMP TM #EMP TM #EMP TM
WB 22,785 38,150 3,523 11,025 1,542 5,920 697 3,267 825 4,566
2200 4,954 7,967 812 2,331 364 1,308 184 781 220 1,025
2300 8,081 12,164 1,413 3,740 575 2,030 303 1,235 350 1,731
2400 8,878 13,536 1,575 4,127 754 2,296 340 1,301 493 2,049
2500 7,203 10,620 1,374 3,351 691 2,040 332 1,162 383 1,635
2600 3,252 4,689 701 1,619 323 918 165 507 213 823
2700 2,823 3,927 596 1,315 261 737 144 430 208 708

Figure 1: Frequency of playing engine moves with different
swing values.

3 RESULTS

Our results show that the raw factor of swing makes
a large impact on the ability of players at all levels
to find the optimal move m1 identified (at the high-
est depth) by the engine, and that this carries forward
to our more-refined difficulty and discrimination mea-
sures. The WB games seemed to function as if they
were a rating level below 2200, most often in the
range 1800 to 2100.

Table 1 gives the total moves (TM) and times with
the engine’s move played (EMP) for each of five inter-
vals of swing values sw(m1), and Figure 1 graphs the
frequencies of m1 being played in each case. The plot
clearly indicates that high-swing moves are “tricky”
for players to find—the players more often chose infe-
rior moves. The phenomenon is consistent with play-
ers of any Elo ratings, where higher rated players are
slightly less tricked by the swing values. This feature
is more prominent in the blitz tournament. Quick de-
cision making often leads to pick inferior moves, or
where the virtue of the engine move was not obvious
at lower depths.

In our implementation, we rank the possible

Figure 2: Frequency of playing engine moves for position
with various complexity.

moves at any particular position based on the order
provided by the chess engines. Often the first move
listed by the engine shows less swing, and make it
attractive choice for the players from the beginning.
Earlier studies show that players often chose the first
move listed by the engine 58% of the time whereas the
second move is chosen only 42% of the time. Table 2
shows that in fact the first listed move often has much
lower swing with comparison to the other tied moves.
This is true for players across any ability level.

Figure 2 represents the probability of playing the
best move for positions of various complexity. The
probability gets monotonically decreased. The ran-
dom noise seen at positions with higher complexity is
due to insufficient number of samples(see Table 3).

Figure 3 demonstrates difficulty and best-move
probability for various positions. The figure clearly
shows that players of all calibers could find the best
move when the position is easy, but less than 50%
of the time when the difficulty lies between 4 and 5.
Table 4 shows the distribution of data across various
difficulty levels. Figure 4 shows a similar but lesser
effect for our measure of discrimination.
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Table 2: Swing for Tied moves.

Any # of Tied Moves 2 Tied Moves 3 Tied Moves
Level First Second #Moves First Second #Moves First Second Third #Moves
WB 1.168 1.903 12,163 1.383 2.073 6,580 1.246 2.051 2.646 1,661
2200 1.263 1.912 2,447 1.430 2.056 1,391 1.141 2.005 2.265 329
2300 1.310 2.063 3,731 1.530 2.233 2,120 1.333 2.061 2.782 516
2400 1.330 1.964 4,270 1.555 2.178 2,514 1.211 1.841 2.449 569
2500 1.380 2.154 3,309 1.538 2.302 1,981 1.318 2.127 2.782 476
2600 1.408 2.216 1,607 1.533 2.349 974 1.244 2.338 3.083 242
2700 1.558 2.106 1,255 1.737 2.292 755 1.411 2.011 2.614 210
Overall 1.273 1.989 28,782 1.477 2.163 16,315 1.260 2.043 2.645 4,003

Table 3: Number of times best move played vs. number of total moves at positions of various complexity

0 � Cpx. < 0.2 0.2 � Cpx. < 0.4 0.4 � Cpx. < 0.6 0.6 � Cpx. < 0.8 0.8 �Cpx. � 1
Level #EMP TM #EMP TM #EMP TM #EMP TM #EMP TM
WB 14851 20983 7804 19270 5216 17155 1395 5104 106 416
2200 3083 4098 1863 4051 1216 3894 340 1244 32 125
2300 5227 6779 2933 6308 1984 5790 519 1849 59 174
2400 5672 7236 3421 7315 2282 6574 619 2036 46 148
2500 4590 5731 2916 5923 1946 5369 474 1625 57 160
2600 2061 2547 1384 2706 954 2496 232 761 23 46
2700 1840 2197 1146 2182 830 2084 200 605 16 49

Table 4: Best move and number of total moves for positions with various difficulty.

Diff. < 1 1 � Diff. < 2 2 � Diff. < 3 3 � Diff. < 4 4 � Diff. � 5
Level #EMP TM #EMP TM #EMP TM #EMP TM #EMP TM
WB 10438 13038 3790 6979 3462 7497 3189 8049 8493 27365
2200 2178 2569 754 1269 853 1585 741 1680 2008 6309
2300 3666 4318 1333 2089 1278 2450 1211 2665 3234 9378
2400 3925 4492 1481 2396 1463 2743 1452 3133 3719 10545
2500 3140 3512 1205 1848 1262 2304 1189 2459 3187 8685
2600 1392 1558 572 843 558 996 605 1198 1527 3961
2700 1183 1300 538 761 534 855 460 888 1317 3313

Figure 3: Frequency of playing engine moves for position
with various difficulty.

Figure 4: Frequency of playing engine moves for position
with various discrimination.
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4 CONCLUSION AND PROSPECTS

We have defined quantitative measures for qualitative
concepts of depth, difficulty, complexity, and discrim-
ination. The definitions are within a specific model of
decision making at chess, but use no feature of chess
apart from utility values of decision options, and are
framed via mathematical tools that work across ap-
plication areas. For the first three, we have shown
a strong response effect on performance, though we
have not distinguished the measures from each other.
The effect shows across skill levels and persists when
restricting to controlled cases such as moves of equal
highest-depth value.
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